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The focus of this work is on the modeling of an ion exchange process that occurs in drinking
water treatment applications. The model formulation consists of a two-scale model in
which a set of microscale diffusion equations representing ion exchange resin particles that
vary in size and age are coupled through a boundary condition with a macroscopic ordinary
differential equation (ODE), which represents the concentration of a species in a well-
mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion
exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simu-
lation associated with previous modeling applications. We discuss two different numerical
schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this
two-scale problem. The first scheme is based on the finite element formulation in space
coupled with an existing backward difference formula-based ODE solver in time. The sec-
ond scheme uses an integral equation based Krylov deferred correction (KDC) method and
a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are pre-
sented to validate the new AAM algorithm, which is also shown to be more computation-
ally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher
order KDC scheme is more efficient than the traditional finite element solution approach
and this advantage becomes increasingly important as the desired accuracy of the solution
increases. We also discuss issues of smoothness, which affect the efficiency of the KDC–FES
approach, and outline additional algorithmic changes that would further improve the effi-
ciency of these developing methods for a wide range of applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

An important research topic and application in drinking water treatment is the effective removal of dissolved organic car-
bon (DOC). It is well known that DOC contributes taste, odor, and color to raw drinking water; reacts with chlorine to form
disinfection byproducts; and fouls membrane filtration systems. There are a variety of processes that can be used to remove
DOC. An advanced DOC removal process is ion exchange resin treatment in a completely mixed flow reactor (CMFR), which
has been shown to be more effective than traditional coagulation processes [2,22,24]. The ion exchange process operates as
shown schematically in Fig. 1: raw water and ion exchange resin are mixed in a CMFR; the treated water exits the reactor; a
majority of the ion exchange resin is continuously recycled within the reactor; and a small fraction of ion exchange resin is
removed from the reactor, regenerated to restore exchange capacity, and added back to the reactor [3]. During the residence
. All rights reserved.
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Fig. 1. Continuous flow process schematic.
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time in the reactor charged natural organic matter species in the water phase undergoes ion exchange within the resin
phase, thereby reducing the water phase concentration of this species. Because of the way in which this process operates,
ion exchange resin particles have a distribution of both sizes and ages that represent the time they have been in the reactor
without undergoing regeneration. This is a two-scale problem because the macroscale conditions in the CMFR are effected by
mass transport phenomena within the set of ion exchange particles.

The ion exchange particles are micro-porous, consisting of rigid solid particles with an internal, water-filled pore struc-
ture. Species within the bulk aqueous phase can diffuse within the pore structure and interact with the solid surfaces within
the resin via an ion exchange mechanism. This process thus involves two length scales, the macroscale of the reactor, which
in this case is well mixed, and the microscale, which is the length scale of the individual resin particles. Diffusion is the dom-
inant transport mechanism within the ion exchange particles, which are nearly spherical in shape. Like all mass transfer pro-
cesses, mechanistic description of this ion exchange process requires consideration of the thermodynamic equilibrium state
and the rate of approach to that state.

Previous work has modeled this ion exchange problem using a two-scale approach [4] consisting of a linear equilibrium
relationship between the aqueous phase concentration and the solid phase concentration, a set of spherically symmetric
microscale diffusion equations to describe the rate of ion exchange, and a macroscale ordinary differential equation to rep-
resent the overall effect of ion exchange from all particles on the aqueous phase concentration exciting the treatment pro-
cess. Due to the nature of the CMFR, resin particles are not of a common age, and a residence time distribution (RTD) has to
be introduced to describe the time different size particles have resided in the CMFR system. In order to simulate this two-
scale model, Monte-Carlo schemes have been applied to sample particles of residence time, resulting in large systems of dif-
fusion equations that must be solved simultaneously. Given the computational expense of this approach, it seems worth-
while to consider the development of an effective model that can represent the complexity of the real system without
the expense of the Monte-Carlo algorithm.

The two-scale Monte-Carlo model for ion exchange has been approximated using a higher order Galerkin finite element
method in space and a backward difference formula (BDF) method in time [4]. While efficient higher order BDF methods are
well established, the Monte-Carlo algorithm complicates the use of these higher order methods because the integration his-
tory needed for higher order is not available for new particles added to the system, effectively requiring a frequent restart of
the integrator. Because of this, low-order BDF methods have been used for this problem. Therefore, the efficiency of the
numerical approximation methods used for this ion exchange problem also appears to be fertile ground for gaining efficiency
in the solution of this problem.

Recent work to develop integral equation based Krylov deferred correction (KDC) methods [17–19] accelerated by fast
elliptic equation solvers [7,8,10,12–14] seems to be a potential avenue for gaining solution efficiency for this problem. In
such approaches, the temporal direction is first discretized and the decoupled elliptic equations can then be solved with
a fast elliptic solver. We further notice that the diffusion equation is stiff but linear, while the nonlinear macroscale ODE
is non-stiff, so a semi-implicit marching scheme could be applied to the macroscale ODE model to provide boundary condi-
tions for the microscale diffusion equations.

The overall goal of this work is to advance the efficiency of modeling multiscale ion exchange processes. The specific
objectives are: (1) to develop an effective equation approach to the multiscale problem that obviates the need for Monte-
Carlo simulation; (2) to formulate a new numerical approximation method for this problem based upon evolving KDC–fast
elliptic solver methods; (3) to evaluate the accuracy and efficiency of the solution methods resulting from changes in both
the algorithm and approximation methods compared to extant approaches; and (4) to consider ways in which the evolving
numerical approximation algorithm can be further improved for both this application and other potential applications.

This work is organized as follows. In Section 2, we present the classical model in which a set of microscopic diffusion
equations are coupled to a macroscale ordinary differential equation and derive a new age-averaged model by averaging
the resident time for the microscale models. In Section 3, we discuss the finite element based numerical approximation tech-
nique as well as a semi-implicit KDC method accelerated by a fast elliptic equation solver. Finally in Section 4, numerical
results are presented to compare the original two-scale model with the age-averaged model and to compare the standard
FEM-based approximation scheme with a semi-implicit KDC approach.
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2. Modeling dissolved organic carbon removal process

Similar to most existing results in simulating the CMFR system, we assume that all ion exchange resin particles are spher-
ical and homogeneous, although of varying radius and age. This assumption admits symmetry of the solution and a resulting
reduction in spatial dimensionality. We also assume the dominant mechanism of transport within the resin particles is pore
diffusion, whereby solute molecules diffuse in a Fickian manner through the water-filled pores and are in a state of linear
local equilibrium with the solid phase. These assumptions have been used in prior work on this problem and proven to
be reasonably accurate representations of the real system through model verification with experimental data [4].

2.1. Two-scale model

Unlike most similar mass transfer models in which a uniform particle size for the solid phase is assumed, we follow re-
search results from [21,25] and add multiple particle size-classes, which more accurately represent the actual conditions
present in the system. We denote the total number of such classes by Nsize and assume the size distribution of the resin par-
ticles is time-independent [4]. Also, due to the flow in the CMFR system, each ion exchange resin particle is resident in the
CMFR for a varying length of time, i.e., new resin particles come into the system continuously, simultaneously replacing an
equal portion of the resident resin particles. Therefore, a residence time distribution (RTD) can be introduced to describe the
‘‘age” of each particle size class in the CMFR. We refer to the discretized total number of particle age-classes as Nage, which
approximates the RTD.

2.1.1. Microscale model
At the scale of an individual resin particle, which we will refer to as the microscale, we model transport as spherical dif-

fusion through a homogeneous, symmetric particle through the following closed conservation of mass equation written in
terms of the water-phase solute concentration c in the pore fluid as
1þ ð1��pÞqs
�p
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@c

� �
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@t ¼

Dp;e

r2
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@r r2 @c
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� �
;

cðt ¼ 0; rÞ ¼ 0;
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��
r¼0 ¼ 0; t > 0;

cðt > 0; r ¼ RÞ ¼ C;

8>>>><>>>>:

where q is the solute mass fraction of the solid phase, which is a linear function of c, �p is the resin porosity, t is time, qs is the
solid phase density, Dp;e is the effective pore diffusion coefficient, r is the radial distance from the center of the resin particle,
R is the resin particle radius, and C is the solute concentration in the bulk fluid within the CMFR. We further assume that �p

and qs are constants and Dp;e is independent of the solute concentration.
As in [4], we assume a linear relation between the solute concentration c in the pore fluid and the solute concentration q

on the solid phase, which has been validated by experiments, and denote the linear factor by KD, where q ¼ KDc. The micro-
scale model is then given by
1þ ð1��pÞqsKD
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;
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cðt > 0; r ¼ RÞ ¼ C:

8>>>><>>>>: ð1Þ
Note that the solute concentration C in the CMFR is unknown in this microscale system. In order to complete the model, an
equation for C at the macroscale will be developed in next section.

The equation system in (1) is for each specific particle size and age, therefore in the numerical simulation, Nsize � Nage dif-
fusion systems need to be solved at each time step, which is the most time consuming part of the numerical simulation.

2.1.2. Macroscale model
The macroscale portion of the model is a conservation of mass equation for a CMFR, which consists of mass entering the

system in the water phase, mass exciting the system in the water phase, and mass transfer from the water phase to the ion
exchange resin. Under the conditions of a constant volume of fluid V in the CMFR, the macroscale model is
V dC
dt ¼ QðC0 � CÞ �Ma�s;

Cðt ¼ 0Þ ¼ C0;

(
ð2Þ
where V is the volume of the water phase in the reactor, Q is the volumetric flow rate, C0 is the influent solute concentration,
C is the effluent solute concentration from the reactor equal to the solute concentration in the bulk fluid phase, and Ma�s is
the total interphase mass exchange of solute from the aqueous phase to the resin phase, which can be determined by the
microscale model using
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Ma�s ¼ ms

ð1� �pÞqsR
3F;
where F is the microscale mass flux and ms is the total mass of solids in the system defined as
ms ¼ CRqaV :
Here CR is the volume of resin normalized by the volume of the water in the reactor, the resin is assumed to be incompress-
ible, and qa ¼ ð1� �pÞqs is the bulk density of the resin. For a system with the same size and age particles, the flux into the
particle is defined by
F ¼ �pDp;e
@c
@r

����
r¼R

:

This equation shows how the macroscale model couples with the microscale system. For a system with multiple sizes and
ages of resin particles, Ma�s can be defined as the integral of flux with respect to particle sizes and ages as in
Ma�s ¼ 3�pDp;ems

qa

Z Rmax
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1
R
@c
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����
r¼R

gðtaÞhðRÞdta dR;
where gðtaÞ is the particle age probability density function, and hðRÞ is the particle size probability density function.

2.1.3. Two-scale model
Combining the micro- and macro-scale systems, the two-scale model for the ion exchange process is summarized by Eqs.

(3) and (4) as follows. At microscale, for each resin particle size the retarded diffusion equation model is
Rf
@c
@t ¼

Dp;e

r2
@
@r r2 @c

@r

� �
;

cðt ¼ 0; rÞ ¼ 0;
@c
@r

��
r¼0 ¼ 0; t > 0;

cðt > 0; r ¼ RÞ ¼ C;

8>>><>>>: ð3Þ
where the retardation factor is
Rf ¼ 1þ qaKD

�p
:

At macroscale, Eq. (2) can be rewritten as follows:
dC
dt ¼

Q
V ðC0 � CÞ �Ma�s=V ;

Cðt ¼ 0Þ ¼ C0:

(
ð4Þ
For a batch system with no inflow or outflow, and a constant age of resin particles, Eq. (4) can be written as follows:
dC
dt ¼ �Ma�s=V ;

Cðt ¼ 0Þ ¼ C0:

(
ð5Þ
2.2. Age-averaged model

In order to simulate the two-scale model with the traditional algorithm, a diffusion equation (3) must be solved at every
time step for each particle size and age sampled by the Monte-Carlo method. The solution of the Nsize � Nage diffusion equa-
tions is the most time consuming part of the numerical simulation. In this section, instead of using the Monte-Carlo approach
to approximate the RTD (age), we derive a new age-averaged model, by introducing a new unknown variable
csðt; rÞ ¼
X

all size s particles

cs;aðt; rÞ; ð6Þ
where cs;a is the solute concentration in the original two-scale model for a specific particle of size s and age a, and the sum-
mation is for all particles of the same size s (two particles may have the same size and age).

To derive the corresponding microscale equation for csðt; rÞ, we consider csðt þ Dt; rÞ � csðt; rÞ, which can be computed as
csðt þ Dt; rÞ � csðt; rÞ ¼
X

staying

ðcs;aðt þ Dt; rÞ � cs;aðt; rÞÞ �
X

outgoing

cs;aðti; rÞ þ
X

incoming

cs;aðti; rÞ; ti 2 ½t; t þ Dt�;
where ‘‘staying” particles represent the particles that are in the system from time t to t þ Dt, ‘‘outgoing” and ‘‘incoming” par-
ticles are those particles leaving and entering the CMFR in the time interval ½t; t þ Dt�, respectively. Further notice that for the
‘‘incoming” particles, cs;aðti; rÞ ¼ 0 initially and

P
outgoingcs;aðti; rÞ can be determined by the outgoing flow rate and the current

csðt; rÞ as in
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X
outgoing

cs;aðti; rÞ ¼ kcsðt; rÞDt;
where k is determined by the outgoing flow rate in the CFMR system. Therefore,
csðt þ Dt; rÞ � csðt; rÞ
Dt

¼
X

staying

cs;aðt þ Dt; rÞ � cs;aðt; rÞ
Dt

� �
� kcsðtÞ:
As cs;aðt; rÞ satisfies the diffusion equation, letting Dt ! 0, we can derive the differential equation for csðt; rÞ and the result-
ing microscale system in the averaged model becomes
Rf
@csðt;rÞ
@t ¼ Dp;e

r2
@
@r r2 @csðt;rÞ

@r

� �
� kRf csðt; rÞ;

csðt ¼ 0; rÞ ¼ 0;
@csðt;rÞ
@r

���
r¼0
¼ 0; t > 0;

csðt > 0; r ¼ RÞ ¼ n � C;

8>>>>><>>>>>:

where n is the total number of particles of size s and the initial and boundary conditions are determined by studying the
summation in Eq. (6). Normalize the variable cs by ~csðt; rÞ ¼ csðt; rÞ=n, we derive the age-averaged equation in
Rf
@~csðt;rÞ
@t ¼ Dp;e

r2
@
@r r2 @~csðt;rÞ

@r

� �
� kRf ~csðt; rÞ;

~csðt ¼ 0; rÞ ¼ 0;
@~csðt;rÞ
@r

���
r¼0
¼ 0; t > 0;

~csðt > 0; r ¼ RÞ ¼ C:

8>>>>><>>>>>:

To simplify the notation, we slightly abuse our notation and use cs to represent the normalized ~cs, and summarize the age-

averaged model as follows at the microscale
Rf
@csðt;rÞ
@t ¼ Dp;e

r2
@
@r r2 @csðt;rÞ

@r
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� kRf csðt; rÞ;

csðt ¼ 0; rÞ ¼ 0;
@csðt;rÞ
@r

���
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¼ 0; t > 0;

csðt > 0; r ¼ RÞ ¼ C;

8>>>>><>>>>>:
ð7Þ
and at the macroscale
dC
dt ¼

Q
V ðC0 � CÞ � Ma�s

V ;

Cðt ¼ 0Þ ¼ C0:

(
ð8Þ
Compared with the original two-scale model, the microscale system in the age-averaged model becomes a system of
microscale diffusion–reaction equations, and the coefficient for each reaction term can be measured or controlled by the
regeneration rate of the ion exchange resin in the CMFR system. Because, we have a well-mixed system in which the size
distribution is constant with time, k will be constant for all particle sizes. An immediate advantage of the AAM is that sam-
pling of different ages is no longer necessary, hence the numerical simulations are greatly simplified.

3. Numerical algorithms

There exist many numerical techniques to approximate the solution of systems of differential equation initial value prob-
lems [1,5,11,15,16,23]. In this section, we discuss two types of numerical methods for approximating the solution of the ori-
ginal two-scale model and new age-averaged model, including (1) a finite element method (FEM) based scheme; and (2) a
new Krylov deferred correction (KDC) method accelerated by a fast elliptic equation solver. These approaches are discussed
in turn in the sections that follow.

3.1. Finite element method

In the first numerical scheme, we used the Galerkin finite element method (FEM) with cubic Lagrange polynomials as
basis and test functions for the approximation in the spatial direction and discretized the spatial nodes to yield equal volume
cubic elements. Gaussian quadrature was used to integrate the cubic Lagrange polynomials and nodes were spaced equidis-
tant within each element.

The resulting ordinary differential equation (ODE) system was solved using existing initial value ODE solvers. In our mat-
lab implementation, ode15s was used for time integration with the AAM. However, for the traditional Monte-Carlo algo-
rithm, ode15s was inefficient because the history of the ODE system was reinitialized whenever a new particle was added
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to the system, which required that the integrator be restarted. Because of this, it was found that a backward Euler approach
was more efficient for the Monte-Carlo algorithm than a higher order approach. All results for the Monte-Carlo method with
a FEM solution approximation in space thus used backward Euler time integration. The FEM method results in a set of linear
equations that must be solved at each time step. Ordering of the equations allowed this system to be formed as a banded
system, which was efficiently solved using a single lower–upper-decomposition factoring, followed by a sparse back substi-
tution at each time step. The linear algebra portion of the solution scale linearly with the number of particles in the system.
We refer interested readers to [4] for the application of the FEM to the original two-scale model in which a Monte-Carlo algo-
rithm was used to approximate the RTD of the resin particles. The FEM solution used in this work is relatively mature, effi-
ciently implemented, uses higher order methods in space and variable element spacing, but is restricted because of the
Monte-Carlo algorithm to a low-order method in time.

3.2. Krylov deferred correction method

The KDC method was first introduced in [17] in which it was analytically shown that for linear problems, the spectral
deferred correction (SDC) method introduced in [9] is equivalent to solving a preconditioned form of a collocation formula-
tion resulting from a Neumann series expansion. Instead of simply accepting the Neumann series result, in the KDC scheme
the collocation system is preconditioned by the SDC method, and is solved efficiently using a Newton–Krylov (NK) method to
accelerate the convergence and avoid the divergence of SDC methods for certain kinds of equations. Further, a Jacobian-Free
NK (JFNK) scheme [20] is used to avoid the costly evaluation of the Jacobian matrix of the preconditioned system.

As the KDC method is new and evolving, in this section we briefly explain how the KDC method works for a general par-
abolic type partial differential equation (PDE) system of the form
Lðut ;u;ux; uxxÞ ¼ 0; ð9Þ
where u ¼ uðx; tÞ and proper initial and boundary conditions are given. Interested readers are referred to [19] for a detailed
description of the KDC method for approximating the solution of PDE’s.

To march from t0 to t0 þ Dt in the KDC scheme, instead of using a traditional discretization scheme based on the differ-
ential form of the equation, we first introduce U ¼ ut as the new unknown, and discretize the PDE in the temporal direction
using p Gaussian quadrature nodes~t ¼ ½t1; t2; . . . ; tp�T . The resulting discretized system becomes a coupled elliptic equation
system
L U;u0 þ DtS� U;
d
dx
ðu0 þ DtS� UÞ; d2

dx2 ðu0 þ DtS� UÞ
 !

¼ 0; ð10Þ
where DtS is a matrix mapping the function values fUðx; tmÞ; m ¼ 1; . . . ; pg at the Gaussian nodes~t to their temporal integralR
Uðx; tÞdt using spectral integration as discussed in [9], � denotes the component-wise tensor product of the spectral inte-

gration matrix (DtS is applied to the vector fUðx; tmÞgp
m¼1 for each fixed x), and u0 þ DtS� U represents the matrix form of the

spectrally accurate approximation of the solution uðxÞ in one big time step. In this paper, we symbolically denote this col-
location formulation in Eq. (10) as HðUÞ ¼ 0. Notice that although this formulation has excellent numerical properties in
accuracy and stability, its direct solution is in general computationally expensive as the unknowns are coupled at all times
(the solution Uðx; tmÞ depends on the unknowns Uðx; tiÞ for i ¼ 1; . . . ; p), while in the traditional backward differentiation for-
mula (BDF) or many Runge–Kutta based methods, the solution Uðx; tmÞ only depends on the values Uðx; tiÞ at previous times
i ¼ 1; . . . ;m.

Instead of solving the collocation formulation in Eq. (10) directly in the KDC method, we assume a provisional solution eU
derived by the low-order BDF or Runge–Kutta method, and define the equation for the error d ¼ U � eU by
L eU þ d;u0 þ DtS� ðeU þ dÞ; d
dx
ðu0 þ DtS� ðeU þ dÞÞ; d2

dx2 ðu0 þ DtS� ðeU þ dÞÞ
" #

¼ 0: ð11Þ
To find an approximate solution of the error d which will be denoted by ~d, we can apply the BDF or Runge–Kutta method
to Eq. (11), which is equivalent to solving
L eU þ ~d;u0 þ DtSeU þ DteS~d;
d
dx
ðu0 þ DtSeU þ DteS~dÞ; d2

dx2 ðu0 þ DtSeU þ DteS~dÞ
" #

¼ 0; ð12Þ
where eS is the corresponding lower triangular approximation of the spectral integration matrix S. In particular, the forward
Euler method is equivalent to the rectangle rule using the left end point (derivative information at left end point) and the
backward Euler method is the rectangle rule using the right end point (derivative information at right end point). Notice that
in Eq. (12), the unknowns ~dðx; tmÞ at different times are ‘‘decoupled” such that ~dðx; tmÞ only depends on ~dðx; tiÞ at previous
times i ¼ 1; . . . ;m as in traditional time marching schemes, and each decoupled elliptic equation can be solved efficiently
using a fast elliptic equation solver.

In the original SDC method [9], a low-order approximate solution ~d was added to the provisional solution eU to derive a
better approximation of the solution U, and the updated eU was used to derive a new error equation. This iteration continued
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for a fixed number of times or when a prescribed accuracy tolerance was achieved. In [17], it was shown that for linear prob-
lems, this SDC procedure is equivalent to a preconditioned Neumann series expansion in which the preconditioner is the
lower order time stepping scheme. In [18], it was numerically shown that this Neumann series expansion is divergent for
many differential algebraic equation systems. To accelerate the convergence and avoid the divergence of the SDC method,
in [18], Eq. (12) was considered as an implicit function ~d ¼ eHðeUÞ. Since the Jacobian matrix of eH is closer to �I, the New-
ton–Krylov method can be adapted and applied directly to find the zero of the implicit function, which also solves the ori-
ginal collocation formulation in Eq. (10). This Newton–Krylov method for the SDC preconditioned system in Eq. (12) is
referred to as the Krylov deferred correction (KDC) method.

KDC methods can be coupled with many existing low-order time stepping schemes. It would also be possible to combine
the KDC temporal solution approach with the FEM method used in this work. In this paper, the KDC scheme is compared
with the FEM approach which was presented in previous work [4]. Further efficiency acceleration of the FEM using KDC
and other techniques are not considered in this work.

3.3. Semi-implicit KDC method

The application of the KDC method to the two-scale model using both the extant Monte-Carlo algorithm and the new
AAM is straightforward. For the macroscale ODE system, introducing U ¼ dC=dt as the new unknown, a Picard type integral
equation formulation results of the form given by
U ¼ Q
V

C0 � C0;m þ
Z t

0
UðsÞds

� �	 

�Ma�s

V
;

where Ma�s is determined by solving the system of microscale diffusion equations using either the Monte-Carlo or the AAM
algorithm. Assuming a provisional solution eU is available, we can define the error d using U ¼ eU þ d, and the Picard equation
for the error is given by
eU þ d ¼ Q
V

C0 � C0;m þ
Z t

0
ðeUðsÞ þ dðsÞÞds

� �	 

�Ma�s

V
: ð13Þ
Similarly, for the diffusion equation (Monte-Carlo algorithm) or the diffusion–reaction equation (AAM), we can introduce
Yðt; rÞ ¼ @cðt; rÞ=@t as the new unknown, where c is either cs;a for each sampled size and age particle in the Monte-Carlo
method, or cs in AAM, and derive a Picard integral equation and corresponding error equation for Y. Specifically, for the
Monte-Carlo method, the Picard type equation for each diffusion equation of the form
rRf
@c
@t
¼ 2Dp;e

@c
@r
þ rDp;e

@2c
@r2
is given by
r
Rf

Dp;e
Y � 2

d
dr

Z t

0
Yðs; rÞds� r

d2

dr2

Z t

0
Yðs; rÞds ¼ 2

d
dr

c0 þ r
d2

dr2 c0:
Assuming a provisional solution eY is available, the error equation for the error cðt; rÞ ¼ Yðt; rÞ � eY ðt; rÞ becomes
r
Rf

Dp;e
ðeY þ cÞ � 2

d
dr

Z t

0
ðeY ðs; rÞ þ cðs; rÞÞds� r

d2

dr2

Z t

0
ðeY ðs; rÞ þ cðs; rÞÞds ¼ 2

d
dr

c0 þ r
d2

dr2 c0: ð14Þ
The approach for the AAM is nearly identical, except for the reaction term, so we will neglect these details without loss of
clarity or completeness.

In the original KDC methods [18,19], for a given error equation, an explicit low-order scheme (e.g., forward Euler method)
was applied if the system was non-stiff or mildly stiff, and an implicit low-order scheme (e.g., backward Euler method) was
used to approximate the error for stiff systems. In this section, to further improve the efficiency of the KDC methods, we
notice that the diffusion equation for c is stiff but linear, and the macroscale error equation for d is non-stiff. Therefore, a
semi-implicit KDC scheme can be used in which an implicit scheme is applied to the microscale diffusion system and an ex-
plicit technique is applied to the non-stiff macroscale ODE system.

In order to solve the error equations (13) and (14) when marching from tm to tmþ1 in the semi-implicit KDC (SI-KDC)
scheme, we first apply an explicit low-order time stepping scheme to the discretized macroscale equation. Application of
the forward Euler method yields the discretized system given by
eUmþ1 þ ~dmþ1 ¼
Q
V

C0 � C0;m þ DtS� eU þXmþ1

l¼1

Dtl
~dl�1

 !" #
� Ma�s

V

� �
m
; ð15Þ
where Dtlþ1 ¼ tlþ1 � tl and d0 ¼ 0. Notice that no data at time tmþ1 is required on the right hand side of the equation. We fur-
ther denote Eq. (15) as an implicit function for ~d whose explicit form is given by
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~d ¼ eHmacroðeU ; eY Þ ¼ 1þ Q
V

Dt ~SE

� ��1 Q
V
ðC0 � C0;m � DtSeUÞ � eU � Ma�s

V

� �
m

	 

; ð16Þ
where eSE is the matrix form of the lower-triangular approximation of the spectral integration matrix S, which is equivalent to
an explicit low-order time stepping scheme, and the dependence on eY is implicitly expressed in Ma�s=V .

Once ~dmþ1 is available, we can explicitly derive the boundary condition for the microscale model at time tmþ1. To march
the diffusion type error equation (14) from tm to tmþ1 using a low-order method, as the equation is stiff, an implicit scheme
has to be applied in general for efficiency considerations (as much larger time step-size can be used). In our current imple-
mentation, the backward Euler method is used, and the discretized system for ~cmþ1 becomes
r
Rf

Dp;e
Y � 2

d
dr

DtSþ
Xmþ1

l¼1

Dt~cl

 !
� r

d2

dr2 DtSþ
Xmþ1

l¼1

Dt~cl

 !
¼ 2

d
dr

c0 þ r
d2

dr2 c0; ð17Þ
which can written as an implicit method for ~c whose explicit form is given by
~c ¼ eHmicroðeU ; eY Þ ¼ r
Rf

Dp;e
� 2

d
dr

DteSI � r
d2

dr2 DteSI

 !�1
d2

dr2 rðc0 þ DtSeY Þ þ 2
d
dr
ðc0 þ DtSeY Þ � r

Rf

Dp;e

eY !
; ð18Þ
where eSI is the corresponding lower triangular approximation of the spectral integration matrix S, and the dependency on eU
is implicitly expressed in the boundary conditions. Notice that to find ~cmþ1ðrÞ, a linear elliptic equation of the form
a2~cmþ1ðrÞ � r2~cmþ1ðrÞ ¼ f ðrÞ
must be solved, where all the known quantities are collected in f(r). This will be discussed in the next section.
Since the zero of the preconditioned implicit microscale and macroscale system given by
0 ¼ eHmacroðeU ; eY Þ ¼ ~d;

0 ¼ eHmicroðeU ; eY Þ ¼ ~c

(
ð19Þ
also satisfies the original collocation formulation symbolically denoted as
0 ¼ HmacroðU;YÞ;
0 ¼ HmicroðU; YÞ

�
ð20Þ
for both the Monte-Carlo method and AAM, the Jacobian matrix of the preconditioned system (19) is closer to the identity
matrix than the original formulation (20), the JFNK method can be applied directly to solve the preconditioned system (19),
and each function evaluation is simply one low-order time stepping approximation of the errors ~d and ~c.

It is also possible to further improve the efficiency of the algorithm by only applying the Newton–Krylov methods to
~d ¼ eHmacroðeUÞ, and consider the microscale equations as implicit functions of ~d. The advantage of doing so is that the number
of operations and required storage can be greatly reduced in the Krylov iterations.

Finally, we note that there is a discontinuity in the solution of the diffusion equation or the diffusion reaction equation:
when t ¼ 0, the boundary condition at r ¼ R is given by C – 0, while the solution inside the resin particle cðt ¼ 0; rÞ ¼ 0.
Therefore in our numerical simulation, we apply the second-order Crank–Nicolson method for the initial several time steps
with very small step-sizes, and start the higher order SI-KDC solver once the solution becomes reasonably smooth. This will
be further discussed in Section 4.

3.4. Fast elliptic solver

When the microscale diffusion or diffusion–reaction equation is discretized using a low-order implicit time stepping
scheme (e.g., the backward Euler method), the resulting system becomes a Poisson type equation in the form
a2u�r2u ¼ k2u� 1
r2

@

@r
r2 @u
@r

� �
¼ f ðrÞ; ð21Þ
where f ðrÞ is a given function. This equation is often referred to as the modified Helmholtz equation in computational fluid
dynamics, or the linearized Poisson–Boltzmann equation when simulating the electrostatics in biomolecular systems. Exist-
ing numerical schemes for this equation include finite difference, finite element, and integral equation methods. In partic-
ular, accurate and efficient numerical methods based on integral equation formulations accelerated by fast algorithms are
discussed in [7,8,10,12–14]. In this paper, we present the Chebyshev spectral integration method for the special spherical
geometry, and discuss a numerical scheme for the efficient solution of the scaled equation
cru� 2u0 � ru00 ¼ f ðrÞ: ð22Þ
When the resin particles are of complex geometry, we refer interested readers to [7,10,14] for several integral equation
methods accelerated by the new version of Fast Multipole Methods (FMM).
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In the Chebyshev spectral integration method, unlike traditional spectral methods, we set the unknowns as the coeffi-
cients of the Chebyshev expansion of u00 as in
u00ðrÞ ¼
X
m¼0

amTmðrÞ;
where Tm is the Chebyshev polynomial of degree m defined as
TmðrÞ ¼ cosðm cos�1 rÞ;
and we assume the Chebyshev expansion of the function f ðrÞ is given by
f ðrÞ ¼
X
m¼0

bmTmðrÞ:
The advantage of studying the Chebyshev expansion of u00 instead of the expansion for u is that the spectral integration ma-
trix, which maps the coefficients of u00 to those of u0, has a tridiagonal form as discussed in [12], and the resulting linear sys-
tem for famg forms a hepta-diagonal system, which can be solved using approximately OðPÞ operations where P terms are
used in the expansion. Also, the spectral integration schemes are more accurate and stable than the corresponding spectral
differentiation based schemes, as discussed in [6,9,12].
4. Simulation results

In this section, we present numerical simulation results using the FEM and SI-KDC schemes for both the original Monte-
Carlo method and the new AAM for the two-scale ion exchange application. Our simulations were performed on a laptop
with an Intel 2 GHz CPU and 1 GB of RAM.

4.1. Accuracy and efficiency comparisons

To study the accuracy and efficiency of the FEM and KDC methods, we applied the methods to a diffusion equation system
@c
@t
¼ D

Rf

@2c
@r2 þ

2
r
@c
@r

 !

with fixed boundary conditions. Introducing the new unknown uðt; rÞ ¼ cðt; rÞ � r, the equation for u becomes
@u
@t
¼ D

Rf

@2u
@r2
with initial and boundary conditions
uðt; r ¼ 0Þ ¼ 0;
uðt; r ¼ RÞ ¼ RC0;

uðt ¼ 0; rÞ ¼ rf ðrÞ; 0 < r < R;

8><>:

where C0 is the constant concentration at the surface of the sphere. Notice that at t ¼ 0; C0 is not necessarily the same as
f ðRÞ. This discontinuity in the initial/boundary values makes the numerical simulation difficult when using approximation
schemes requiring smoothness properties of the solution. In this example, as the pseudo-spectral formulation based KDC
schemes are not advantageous for solutions with such a discontinuity, so we first use a low-order method to march the equa-
tion from t ¼ 0 to 0.01. Once the solution becomes ‘‘smooth”, the KDC approach is applied. There exist many numerical
schemes for dealing with the sharp initial solution, and our approach was intended to provide an approach that contributed
negligibly to the error in the solution, but it is not an optimal approach. For example, the analytical form of this sharp solu-
tion can be extracted using a Laplace transform and method of images, and the KDC technique could then be applied to the
remaining smooth part of the solution.

In Fig. 2, we first compare the accuracy of the FEM and KDC schemes. In the FEM-based scheme, cubic Lagrange polyno-
mials are used as basis functions for the Galerkin formulation and discretization is accomplished using 32 spatial nodes,
which were regularly spaced within 10 equivalent volume elements. In the KDC method, the spatial elliptic equation was
solved using the Chebyshev spectral integration method with 32 Chebyshev nodes and the solution was further accelerated
by using the fast Fourier transform (FFT). For the temporal direction, seven Radau IIa nodes were used so the temporal order
was approximately 13. In both simulations, we marched from t ¼ 0:01 (so the analytical solution is reasonably smooth) to
tfinal ¼ 1 with Dt ¼ 0:1 (except for the last step), and use the exact solution to derive the initial and boundary values.

From the numerical simulations, it can be seen that results from both the KDC and FEM are close to the analytic solution.
However, the results from the KDC method are more accurate than those from FEM, which is not surprising due to the very
high-order of the KDC scheme. As for the efficiency of the numerical schemes, in order to acquire 5–9 digits accuracy in the
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Fig. 2. Comparison of the FEM, KDC, and analytic solutions for diffusion into sphere with a fixed boundary condition.
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KDC scheme, the number of required function evaluations (each elliptic equation solve = one ‘‘function evaluation”) is in the
range of 10 and 30. While for the FEM, over 300 function evaluations are required to obtain 6–7 digits of accuracy.

Higher order (in time) KDC methods may not be advantageous for ‘‘non-smooth” solutions. For this test problem, as the
given initial condition is discontinuous in spatial and temporal directions at ðr ¼ 1; t ¼ 0Þ, a Crank–Nicolson method in time
was applied for the first few steps, and the higher order KDC method was used once the solution became reasonably smooth.
In Fig. 3, we compare the smoothness of the solution at t ¼ 0:0001, 0.001, and 0.01. Our numerical experiments show that
using 32 spatial nodes for the interval [0,1] and 7 temporal nodes for each marching step with step-size 0.069, the KDC
method can sufficiently resolve the solution in the time interval [0.01,0.7]. However such settings cannot accurately resolve
the solution for t < 0:01.

Due to the ‘‘non-smoothness” of the solution and current non-adaptive implementation of the KDC scheme, our numer-
ical experiments show that compared with FEM, KDC methods are less efficient when marching from t ¼ 0:0001 to 0.01 for
the same accuracy requirement, while they become more efficient when marching from t ¼ 0:01 to 0.7.

In Fig. 4, we compare the efficiency and accuracy of the FEM and KDC methods by plotting the CPU time versus error. To
minimize random computer execution factors in the operating system, both methods were executed 100 times. For both
methods, we used a low-order scheme to march from t ¼ 0 to 0.01. Once the solution becomes reasonably smooth, the
KDC scheme was used to march from t ¼ 0:01 to 0.7 with fixed time step-size Dt ¼ 0:069, while an adaptive strategy was
applied in the FEM using matlab built-in ODE solvers. Our numerical results show that for the same accuracy requirement,
the KDC scheme is more efficient than the FEM-based method for this example. It is important to note the FEM method used
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an optimized variable order, variable time step-size method, whereas the KDC method was a relatively crude fixed order,
fixed step-size algorithm. One could further improve the efficiency of the KDC scheme using optimal control parameters,
including the number of nodal points in the spatial and temporal directions, error tolerance, and an adaptive strategy in
step-size and order selection. Results along these directions will be reported in the future.

Our numerical experiments also reveal that higher order methods become more efficient for smooth solutions. In Fig. 5,
we show how the accuracy of the KDC methods depends on the number of Radau IIa collocation nodes for different time
step-sizes, by comparing the accuracy as a function of the number of elliptic equation solves. Note that instead of CPU time,
we compare the number of function evaluations for varying numbers of Radau nodes since the CPU time for KDC methods is
linearly related to the number of function evaluations. Our numerical results show that for a fixed number of Radau IIa
nodes, smaller time step-size means better accuracy; and for the same accuracy requirement, higher order schemes are more
efficient than low-order schemes, especially when very high precision is required.

In Fig. 6, we show the convergence of the KDC methods for different number of Radau IIa nodes and step-sizes. It can be
seen that for the same step-size, using more node points will generate more accurate results, and for the same number of
node points, the error decreases rapidly when using smaller step-sizes. Also, due to the large step-size used by the KDC
schemes for higher accuracy requirements (Dt � 0:5 for 13 digits accuracy when using 5 Radau node points), we could
not observe the traditional convergence orders (when Dt is close to 0) in our numerical simulation.
4.2. Multiple particle size and age system

In our second example, we consider a resin particle system with five different sizes R ¼ 0:07, 0.09, 0.10, 0.11, and 0.13,
and assume they are of the same age and there is no flow ðQ ¼ 0Þ in the batch system. The corresponding microscale system
for each particle is given by
@c
@t ¼ 2

r
D
Rf

@c
@r þ D

Rf

@2c
@r2 ;

cðr; t ¼ 0Þ ¼ 0;
@c
@r

��
r¼0 ¼ 0;

cðr ¼ RÞ ¼ CðtÞ

8>>>><>>>>:

with dynamical boundary condition described by the macroscale model
dC
dt ¼ �Ma�s=V ;
Cð0Þ ¼ C0 ¼ 1:

(
ð23Þ
In the KDC method, we use 20 Radau IIa points in the temporal direction from t0 ¼ 0:015 to tfinal ¼ 1:0 with step-size
Dt ¼ 0:0985 and 32 Chebyshev nodes in the spatial direction in [0,R] for each particle. In Fig. 7, we compare the results from
the KDC scheme to those from the FEM-based method, which has been validated by experimental results in [4]. The KDC
results match those from FEM and experiments.

To compare the efficiency of the SI-KDC and FEM methods for this example, we plot the CPU time of both methods as a
function of the error defined as the difference between the numerical solution and a fine-mesh reference solution in Fig. 8.
Our numerical results show that for the same accuracy, the SI-KDC method is more efficient, especially for higher accuracy
requirements.
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4.3. Age-averaged model

Finally in this section, we compare the numerical results from the original Monte-Carlo algorithm and the AAM. To val-
idate the AAM, we compare results using the FEM for the traditional Monte-Carlo algorithm with the AAM. For the Monte-
Carlo algorithm, we used 20 different particle sizes and 80 different particle ages for each size particle. We further assume
that the radii for particles follow a log-normal distribution with mean logð100:6Þ � 0:5 and standard deviation 1. Settings for
other parameters can be found from previous work in [4].

In Fig. 9(a), we show simulation results for both traditional Monte-Carlo method and the AAM. In Fig. 9(b), we plot the
error for both methods using a very fine-mesh reference solution. We notice that due to the Monte-Carlo nature of tradi-
tional two-scale model simulations, which requires sampling of particle ages at each time marching step, randomness
can be observed in the error of the Monte-Carlo solution, while the error from AAM is much smoother and smaller. The
Monte-Carlo method requires more CPU time due to the solution of different age elliptic equation systems, while only
one elliptic equation solve is required for each particle size in AAM as age sampling is no longer necessary. Our numerical
experiments show that for this example, the Monte-Carlo method needed 1525.6 s, while AAM required 74.3 s in CPU time to
obtain a much more accurate solution.
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To compare the FEM with SI-KDC scheme for the age-averaged model, in Fig. 10 we show the computed concentration as
a function of time in (a) and the CPU times for different accuracy requirements in (b). In the SI-KDC scheme, 32 Chebyshev
nodes were used in the spatial direction and 30 Radau IIa nodes were used from t ¼ 0:01 to tfinal ¼ 10:0 with Dt ¼ 0:999. As
mentioned in previous sections, the second-order Crank–Nicolson method was used from t ¼ 0 to 0.01, and when the solu-
tion becomes reasonably smooth, the SI-KDC method was applied thereafter. The simulation results are similar for both
methods, while for the same accuracy requirements, the SI-KDC is more efficient.
5. Summary

The results of this work detail the derivation and validation of an age-averaged model for the solution of a two-scale ion
exchange problem, which is shown to be exact in form, thus much more accurate and computationally less expensive than
the traditional Monte-Carlo solution method. We also advance a semi-implicit Krylov deferred correction method coupled
with a fast elliptic solver to approximate the large coupled system of differential equations, and we show that this method
is much more efficient than the traditional finite element solution method with higher order time integration, especially for
high accuracy solutions. The SI-KDC method did require a smooth initial condition to be efficient. Future work should be
geared toward refining the SI-KDC method to result in a self-adaptive algorithm to vary the step-size and order of the meth-
od in order accommodate less smooth solutions and to further improve computational efficiency.
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